Optimal Proximity Proofs
نویسندگان
چکیده
Provably secure distance-bounding is a rising subject, yet an unsettled one; indeed, very few distance-bounding protocols, with formal security proofs, have been proposed. In fact, so far only two protocols, namely SKI (by Boureanu et al.) and FO (by Fischlin and Onete), offer all-encompassing security guaranties, i.e., resistance to distance-fraud, mafia-fraud, and terrorist-fraud. Matters like security, alongside with soundness, or added tolerance to noise do not always coexist in the (new) distance-bounding designs. Moreover, as we will show in this paper, efficiency and simultaneous protection against all frauds seem to be rather conflicting matters, leading to proposed solutions which were/are sub-optimal. In fact, in this recent quest for provable security, efficiency has been left in the shadow. Notably, the tradeoffs between the security and efficiency have not been studied. In this paper, we will address these limitations, setting the “security vs. efficiency” record straight. Concretely, by combining ideas from SKI and FO, we propose symmetric protocols that are efficient, noise-tolerant and—at the same time—provably secure against all known frauds. Indeed, our new distancebounding solutions outperform the two aforementioned provably secure distance-bounding protocols. For instance, with a noise level of 5%, we obtain the same level of security as those of the pre-existent protocols, but we reduce the number of rounds needed from 181 to 54.
منابع مشابه
Existence of common best proximity points of generalized $S$-proximal contractions
In this article, we introduce a new notion of proximal contraction, named as generalized S-proximal contraction and derive a common best proximity point theorem for proximally commuting non-self mappings, thereby yielding the common optimal approximate solution of some fixed point equations when there is no common solution. We furnish illustrative examples to highlight our results. We extend so...
متن کاملProofs of proximity for context-free languages and read-once branching programs
Proofs of proximity are probabilistic proof systems in which the verifier only queries a sublinear number of input bits, and soundness only means that, with high probability, the input is close to an accepting input. In their minimal form, called Merlin-Arthur proofs of proximity (MAP), the verifier receives, in addition to query access to the input, also free access to an explicitly given shor...
متن کاملProofs of Proximity for Context-Free Languages and Read-Once Branching Programs - (Extended Abstract)
Proofs of proximity are probabilistic proof systems in which the verifier only queries a sublinear number of input bits, and soundness only means that, with high probability, the input is close to an accepting input. In their minimal form, called Merlin-Arthur proofs of proximity (MAP), the verifier receives, in addition to query access to the input, also free access to an explicitly given shor...
متن کاملProofs of Proximity for Distribution Testing
Distribution testing is an area of property testing that studies algorithms that receive few samples from a probability distribution D and decide whether D has a certain property or is far (in total variation distance) from all distributions with that property. Most natural properties of distributions, however, require a large number of samples to test, which motivates the question of whether t...
متن کاملExistence of best proximity and fixed points in $G_p$-metric spaces
In this paper, we establish some best proximity point theorems using new proximal contractive mappings in asymmetric $G_{p}$-metric spaces. Our motive is to find an optimal approximate solution of a fixed point equation. We provide best proximity points for cyclic contractive mappings in $G_{p}$-metric spaces. As consequences of these results, we deduce fixed point results in $G_{p}$-metric spa...
متن کاملA Note on Almost Perfect Probabilistically Checkable Proofs of Proximity
Probabilistically checkable proofs of proximity (PCPP) are proof systems where the verifier is given a 3SAT formula, but has only oracle access to an assignment and a proof. The verifier accepts a satisfying assignment with a valid proof, and rejects (with high enough probability) an assignment that is far from all satisfying assignments (for any given proof). In this work, we focus on the type...
متن کامل